Open In Github
Python scripts performing object detection using the YOLOv10 model in ONNX.
[!CAUTION] I skipped adding the pad to the input image when resizing, which might affect the accuracy of the model if the input image has a different aspect ratio compared to the input size of the model. Always try to get an input size with a ratio close to the input images you will use.
Requirements
- Check the requirements.txt file.
- For ONNX, if you have a NVIDIA GPU, then install the onnxruntime-gpu, otherwise use the onnxruntime library.
Installation
1
pip install yolov10-onnx
Or, clone this repository:
1
2
3
git clone https://github.com/ibaiGorordo/ONNX-YOLOv10-Object-Detection.git
cd ONNX-YOLOv10-Object-Detection
pip install -r requirements.txt
ONNX Runtime
For Nvidia GPU computers: pip install onnxruntime-gpu
Otherwise: pip install onnxruntime
ONNX model
- If the model file is not found in the models directory, it will be downloaded automatically from the Official Repo.
- Available models: yolov10n.onnx, yolov10s.onnx, yolov10m.onnx, yolov10b.onnx, yolov10l.onnx, yolov10x.onnx
Original YOLOv10 model
The original YOLOv10 model can be found in this repository: https://github.com/THU-MIG/yolov10
- The License of the models is AGPL-3.0 license: https://github.com/THU-MIG/yolov10/blob/main/LICENSE
Examples
- Image inference:
1
python image_object_detection.py
- Webcam inference:
1
python webcam_object_detection.py
- Video inference: https://youtu.be/hz9PYZF4ax4
1
python video_object_detection.py
References:
- YOLOv10 model: https://github.com/THU-MIG/yolov10