Open In Github
Python scripts performing instance segmentation using the YOLOv5 model in ONNX.
Original image: https://www.flickr.com/photos/nicolelee/19041780
Important
- The input images are directly resized to match the input size of the model. I skipped adding the pad to the input image (image letterbox), it might affect the accuracy of the model if the input image has a different aspect ratio compared to the input size of the model. Always try to get an input size with a ratio close to the input images you will use.
Requirements
- Check the requirements.txt file.
- For ONNX, if you have a NVIDIA GPU, then install the onnxruntime-gpu, otherwise use the onnxruntime library.
Installation
1
2
3
git clone https://github.com/ibaiGorordo/ONNX-YOLOv5-Instance-Segmentation.git
cd ONNX-YOLOv5-Instance-Segmentation
pip install -r requirements.txt
ONNX Runtime
For Nvidia GPU computers: pip install onnxruntime-gpu
Otherwise: pip install onnxruntime
ONNX model
You can convert the Pytorch model to ONNX using the following Google Colab notebook:
- The License of the models is GPL-3.0 license: License
Original YOLOv5 model
The original YOLOv5 Instance Segmentation model can be found in this repository: YOLOv5 Instance Segmentation
Examples
- Image inference:
1
python image_instance_segmentation.py
- Webcam inference:
1
python webcam_instance_segmentation.py
- Video inference: https://youtu.be/p2iUTSiZBas
1
python video_instance_segmentation.py
References:
- YOLOv5 model: https://github.com/ultralytics/yolov5
- yolov5-seg-opencv-onnxruntime-cpp: https://github.com/UNeedCryDear/yolov5-seg-opencv-onnxruntime-cpp
- PINTO0309’s model zoo: https://github.com/PINTO0309/PINTO_model_zoo
- PINTO0309’s model conversion tool: https://github.com/PINTO0309/openvino2tensorflow